Cách viết phương trình tham số, phương trình chính tắc của đường thẳng cực hay
A. Phương pháp giải
1. Để viết phương trình tham số của đường thẳng ∆ ta cần xác định
– Điểm A(x0, y0) ∈ ∆
– Một vectơ chỉ phương u→(a; b) của ∆
Khi đó phương trình tham số của ∆ là , t ∈ R.
2. Để viết phương trình chính tắc của đường thẳng ∆ ta cần xác định
– Điểm A(x0, y0) ∈ ∆
– Một vectơ chỉ phương u→(a; b), ab ≠ 0 của ∆ của
Phương trình chính tắc của đường thẳng ∆ là
(trường hợp ab = 0 thì đường thẳng không có phương trình chính tắc)
Chú ý:
– Nếu hai đường thẳng song song với nhau thì chúng có cùng VTCP và VTPT.
– Hai đường thẳng vuông góc với nhau thì VTCP của đường thẳng này là VTPT của đường thẳng kia và ngược lại
– Nếu ∆ có VTCP u→ = (a; b) thì n→ = (-b; a) là một VTPT của ∆ .
B. Ví dụ minh họa
Ví dụ 1: Viết phương trình đường thẳng d đi qua M( -2; 3) và có VTCP u→ = (1; -4) .
A. B. C. D.
Lời giải
Đường thẳng (d) đi qua M(-2; 3) và có VTCP u→ = (1; -4) nên có phương trình
Chọn B.
Ví dụ 2: Viết phương trình chính tắc của đường thẳng ∆ đi qua M(1; -3) và nhận vectơ u→ = (1; 2) làm vectơ chỉ phương.
A. ∆: 2x – y – 5 = 0 B. ∆: C. ∆: D. ∆:
Lời giải
Đường thẳng ∆ :
⇒ Phương trình chính tắc của ∆:
Chọn B
Ví dụ 3. Đường thẳng d đi qua điểm M( 1; -2) và có vectơ chỉ phương u→ = (3; 5) có phương trình tham số là:
A. d: B. d: C. d: D. d:
Lời giải
Đường thẳng d:
⇒ Phương trình tham số của đường thẳng d: (t ∈ R)
Chọn B.
Ví dụ 4. Đường thẳng đi qua hai điểm A(3; -7) và B( 1; -7) có phương trình tham số là:
A. B. C. D.
Lời giải
+ Ta có đường thẳng AB:
⇒ Phương trình AB:
+ Cho t= – 3 ta được : M( 0; -7) thuộc đường thẳng AB.
⇒ AB:
⇒ Phương trình tham số của AB :
Chọn A.
Ví dụ 5: Viết phương thẳng chính tắc của đường thẳng d đi qua hai điểm A( 1; – 2) và B(-2; 3) ?
A. B. C. D.
Lời giải
Đường thẳng d:
⇒ Phương trình chính tắc của đường thẳng d:
Chọn A.
Ví dụ 6: Cho đường thẳng d đi qua điểm M( -2; -3) và N( 1; 0). Viết phương trình chính tắc của đường thẳng d?
A. B. C. D.
Lời giải
Đường thẳng d:
⇒ Phương trình chính tắc của đường thẳng d:
Chọn C.
Ví dụ 7: Cho đường thẳng d đi qua điểm M(-2; 0) nhận vecto u→( 2; -3) làm VTCP. Viết phương trình đường thẳng d dưới dạng chính tắc?
A. B. C. D.
Lời giải
Đường thẳng d:
⇒ Phương trình chính tắc của đường thẳng d:
Chọn B.
Ví dụ 8: Cho hai điểm A( -2; 3) và B( 4; 5). Gọi d là đường trung trực của AB. Viết phương trình đường thẳng d dạng chính tắc?
A. B. C. D.
Lời giải
+ Đường thẳng d là đường trung trực của đoạn thẳng AB nên hai đường thẳng AB và d vuông góc với nhau.
⇒ Đường thẳng d nhận AB→( 6; 2) làm VTPT nên một VTCP của đường thẳng d là u→(1; -3) .
+ Gọi M là trung điểm của AB thì tọa độ M(1;4)
Đường thẳng d:
⇒ Phương trình chính tắc của đường thẳng d:
Chọn D.
Ví dụ 9. Cho tam giác ABC có A( 1;1); B( 0; -2) và C( 4; 2) . Lập phương trình chính tắc đường trung tuyến của tam giác ABC kẻ từ A
A. B. C. D. Đáp án khác
Lời giải
Gọi M là trung điểm của BC. Ta cần viết phương trình đường thẳng AM.
Ta có M là trung điểm của BC nên tọa độ của M là :
⇒ M( 2 ; 0)
Đường thẳng AM :
⇒ Phương trình chính tắc của đường thẳng AM :
Chọn A
C. Bài tập vận dụng
Câu 1: Đường thẳng d đi qua gốc tọa độ O và có vectơ chỉ phương u→ = (-1; 2) có phương trình tham số là:
A. d: B. d: C. d: D. d:
Câu 2: Đường thẳng d đi qua điểm M( 0; -2) và có vectơ chỉ phương u→( 3;0) có phương trình tham số là:
A. d: B. d: C. d: D. d:
Câu 3: Viết phương trình tham số của đường thẳng đi qua hai điểm A(2; -1) và B( 2; 5)
A. B. C. D.
Câu 4: Viết phương trình tham số của đường thẳng đi qua hai điểm A(-1;3) và B( 3;1) .
A. B. C. D.
Câu 5: Đường thẳng đi qua hai điểm A( 1; 1) và B( 2; 2) có phương trình tham số là:
A. B. C. D.
Câu 6: Viết phương thẳng chính tắc của đường thẳng d đi qua hai điểm A(-1; 3) và B(5; 1) ?
A. B. C. D.
Câu 7: Cho đường thẳng d đi qua điểm M(3;2) nhận vecto u→( -4; -2) làm VTCP. Viết phương trình đường thẳng d dưới dạng chính tắc?
A. B. C. D.
Câu 8: Cho hai điểm A(-1; -2) và B(1;4). Gọi d là đường trung trực của AB. Viết phương trình đường thẳng d dạng chính tắc?
A. B. C. D.
Câu 9: Cho tam giác ABC có A( -1; -2) ;B(0; 2) ; C(-2; 1). Đường trung tuyến BM có phương trình là:
A. B. C. D.
Chuyên đề Toán 10: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:
- Cách tìm vecto chỉ phương của đường thẳng
- Cách chuyển dạng phương trình đường thẳng: tổng quát sang tham số, chính tắc
- Viết phương trình đường thẳng đi qua 1 điểm và song song (vuông góc) với 1 đường thẳng
- Xác định vị trí tương đối giữa 2 đường thẳng
- Tìm hình chiếu của 1 điểm lên đường thẳng
Đã có lời giải bài tập lớp 10 sách mới:
- (mới) Giải bài tập Lớp 10 Kết nối tri thức
- (mới) Giải bài tập Lớp 10 Chân trời sáng tạo
- (mới) Giải bài tập Lớp 10 Cánh diều
Mã giảm giá Shopee mới nhất Mã code
- Nước tẩy trang làm sạch L’Oreal giảm 50k
- Kem khử mùi Dove giảm 30k
- Khăn mặt khô Chillwipes chỉ từ 35k