Cách viết phương trình tiếp tuyến của đồ thị hàm số cực hay

Cách viết phương trình tiếp tuyến của đồ thị hàm số cực hay

Cách viết phương trình tiếp tuyến của đồ thị hàm số cực hay

Bài giảng: Cách viết phương trình tiếp tuyến của đồ thị hàm số – Cô Nguyễn Phương Anh (Giáo viên VietJack)

A. Phương pháp giải & Ví dụ

Phương pháp giải

1. Ý nghĩa hình học của đạo hàm

Cho hàm số y = f(x) có đồ thị (C) và điểm. M0 (x0; y0) ∈ (C)

Tiếp tuyến của đồ thị (C) tại điểm M0 có dạng y = f'(x0 )(x – x0 ) + y0

Trong đó:

 Điểm M0 (x0; y0) ∈(C) được gọi là tiếp điểm ( với y0 = f(x0)).

 k = f’x0) là hệ số góc của tiếp tuyến.

Chú ý:

 Đường thẳng bất kỳ đi qua M0 (x0; y0) có hệ số góc k, có phương trình

y = k(x – x0 ) + y0

 Cho hai đường thẳng Δ1:y = k1 x + m1 và Δ2:y = k2 x + m2

Lúc đó:

2. Điều kiện tiếp xúc của hai đồ thị

Cho hai hàm số y = f(x),(C) và y = g(x),(C’)

(C) và (C’ ) tiếp xúc nhau khi chỉ khi hệ phương trình

có nghiệm.

Nghiệm của hệ là hoành độ tiếp điểm của hai đồ thị đó.

Đặc biệt: Đường thẳng y = kx + m là tiếp tuyến với (C):y = f(x) khi chỉ khi hệ có nghiệm.

3. Các dạng phương trình tiếp tuyến thường gặp

Cho hàm số y = f(x) gọi đồ thị của hàm số là (C)

Dạng 1. Viết phương trình tiếp tuyến của đồ thị hàm số (C):y = f(x) tại M0 (x0; y0)

Phương pháp

Bước 1. Tính y’ = f’ (x) suy ra hệ số góc của phương trình tiếp tuyến là k = y’ (x0).

READ  Cách tính diện tích hình bình hành đầy đủ chi tiết nhất - Monkey

Bước 2. Phương trình tiếp tuyến của đồ thị (C) tại điểm M0 (x0; y0) có dạng

y – y0 = f'(x0)(x – x0)

Dạng 2. Viết phương trình tiếp tuyến của đồ thị hàm số (C):y = f(x) có hệ số góc k cho trước.

Phương pháp

Bước 1. Gọi M0 (x0; y0) là tiếp điểm và tính y’ = f’ (x).

Bước 2. Hệ số góc tiếp tuyến là k = f’ (x0). . Giải phương trình này tìm được x0 thay vào hàm số được y0.

Bước 3. Với mỗi tiếp điểm ta tìm được các tiếp tuyến tương ứng

d: y – y0 = f’ (x0)(x – x0)

Chú ý: Đề bài thường cho hệ số góc tiếp tuyến dưới các dạng sau:

Tiếp tuyến d Δ:y = ax + b ⇒ hệ số góc của tiếp tuyến là k = a

Tiếp tuyến d Δ:y = ax + b(a ≠ 0)⇒ hệ số góc của tiếp tuyến là k = -1/a

Tiếp tuyến tạo với trục hoành một góc α thì hệ số góc của tiếp tuyến d là k = ±tan⁡α

Dạng 3. Viết phương trình tiếp tuyến của đồ thị hàm số (C):y = f(x) biết tiếp tuyến đi qua điểm A(xA; yA)

Phương pháp

Cách 1.

Bước 1: Phương trình tiếp tuyến đi qua A(xA; yA) hệ số góc k có dạng

d:y = k(x – xA ) + yA (*)

Bước 2: là tiếp tuyến của khi và chỉ khi hệ sau có nghiệm:

Bước 3: Giải hệ này tìm được x suy ra k và thế vào phương trình (*), ta được tiếp tuyến cần tìm.

Cách 2.

Bước 1. Gọi M(x0; f(x0 )) là tiếp điểm và tính hệ số góc tiếp tuyến

k = y'(x0 ) = f’ (x0) theo x0

Bước 2. Phương trình tiếp tuyến có dạng d = y'(x0 )(x – x0 ) + y0 (**). Do điểm A(xA; yA) ∈ d nên yA = y'(x0 )(xA – x0 ) + y0 giải phương trình này ta tìm được x0 .

READ  Hướng dẫn chi tiết đăng ký thi đánh giá năng lực ĐHQG Hà Nội

Bước 3. Thế x0 vào (**) ta được tiếp tuyến cần tìm.

Ví dụ minh họa

Ví dụ 1: Cho hàm số (C):y = x3 + 3×2. Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1; 4).

Hướng dẫn

Ta có y’ = 3×2 + 6x; y'(1) = 9

Phương trình tiếp tuyến của đồ thị hàm số tại điểm M(1; 4) là:

y = 9(x – 1) + 4 = 9x – 5

Ví dụ 2: Cho hàm số (C):y = 4×3 – 6×2 + 1. Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đi qua điểm A(-1; -9).

Hướng dẫn

Ta có y’ = 12×2 – 12x

Gọi M(x0, y0) là tọa độ tiếp điểm

Phương trình tiếp tuyến của (C) tại điểm M có dạng:

y = (12×02 – 12×0> )(x – x0 ) + 4×03 – 6×02 + 1

Vì tiếp tuyến đi qua điểm A(-1; -9) nên ta có:

-9 = (12×02 – 12×0 )( -1 – x0 ) + 4×03 – 6×03 + 1

Với .

Khi đó phương trình tiếp tuyến cần tìm là y = 15/4 (x – 5/4) – 9/16 = 15/4 x – 21/4

Với x0 = -1 thì .

Khi đó phương trình tiếp tuyến cần tìm là y = 24(x + 1) – 9 = 24x + 15

Ví dụ 3: Cho hàm số (C):. Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng có phương trình Δ:3x – y + 2 = 0

Hướng dẫn

ĐKXĐ: x ≠ -2. Ta có y’ = 3/(x + 2)2 .

Phương trình Δ:3x – y + 2 = 0 hay Δ:y = 3x + 2

Gọi tọa độ tiếp điểm là M(x0, y0)

Vì tiếp tuyến song song với đường thẳng có phương trình Δ:3x – y + 2 = 0 nên ta có

Với x0 = -1

Khi đó phương trình tiếp tuyến cần tìm là y = 3(x + 1) – 1 = 3x + 2 (loại).

Với x0 = -3

Khi đó phương trình tiếp tuyến cần tìm là y = 3(x + 3) + 5 = 3x + 14 (thỏa mãn)

READ  Đối tượng ưu tiên trong tuyển sinh là gì - Đại học Phan Châu Trinh

B. Bài tập vận dụng

Câu 1: Cho hàm số y = -2×3 + 6×2 – 5. Viết phương trình tiếp tuyến của (C) tại điểm M có hoành độ bằng 3.

Câu 2: Cho hàm số (C):y = 1/4×4 – 2×2. Viết phương trình tiếp tuyến của (C) tại điểm M có hoành độ x0 > 0 biết rằng y” (x0 )= -1.

Câu 3: Gọi d là tiếp tuyến của đồ thị hàm số (C):y =(x – 5)/(-x + 1) tại điểm A của (C) và trục hoành. Viết phương trình của d.

Câu 4: Cho đồ thị hàm số y = 3x – 4×2 có đồ thị (C). Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đi qua điểm A(1; 3).

Câu 5: Cho hàm số y = x3 – 3×2 + 6x + 1 có đồ thị (C). Viết phương trình tiếp tuyến có hệ số góc nhỏ nhất.

Câu 6: Cho hàm số (C):y = x3 – 3x + 2. Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đó có hệ số góc bằng 9.

Câu 7: Cho hàm số y = (-x + 5)/(x + 2) có đồ thị là (C). Viết phương trình tiếp tuyến của (C) sao cho tiếp tuyến đó song song với đường thẳng d:y = -1/7 x + 5/7

Câu 8: Viết phương trình tiếp tuyến của đồ thị hàm số y = -x4 – 2×2 + 3 vuông góc với đường thẳng Δ: x – 8y + 2017 = 0

Câu 9: Viết phương trình tiếp tuyến của đồ thị hàm số y = 1/3 x3 + 1/2 x2 – 2x + 1 và tiếp tuyến tạo với đường thẳng d:x + 3y – 1 = 0 một góc 450.

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

  • Trắc nghiệm viết phương trình tiếp tuyến của đồ thị hàm số
  • Dạng 2: Các bài toán về tiếp tuyến của hàm số
  • Trắc nghiệm về tiếp tuyến của hàm số

Mã giảm giá Shopee mới nhất Mã code

  • Mỹ phẩm SACE LADY giảm tới 200k
  • SRM Simple tặng tẩy trang 50k
  • Combo Dầu Gội, Dầu Xả TRESEMME 80k